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SUMMARY

A generalized mover–stayer model is described for conditionally Markov processes under panel
observation. Marginally the model represents a mixture of nested continuous-time Markov processes in
which sub-models are defined by constraining some transition intensities to zero between two or more
states of a full model. A Fisher scoring algorithm is described which facilitates maximum likelihood
estimation based only on the first derivatives of the transition probability matrices. The model is fit to data
from a smoking prevention study and is shown to provide a significant improvement in fit over a time-
homogeneous Markov model. Extensions are developed which facilitate examination of covariate effects
on both the transition intensities and the mover–stayer probabilities.
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1. INTRODUCTION

Multi-state stochastic models provide a useful framework for the analysis of data from longitudinal
studies when interest lies in dynamic aspects of the process under investigation. When subjects
are observed continuously over a period of observation, transitions between states are observed and
parametric, nonparametric, and semiparametric methods may be used (Andersen et al., 1993). In contrast,
when the subjects are seen at discrete time points, exact transition times are not observed and all that is
known is the state occupied at each assessment. Such data are often referred to as panel data. Kalbfleisch
and Lawless (1985, 1989) describe a Fisher scoring algorithm for maximum likelihood estimation of
the transition intensities under a time-homogeneous Markov model in this setting. Applications of this
methodology to problems in infectious disease (Gentleman et al., 1994), rheumatology (Gladman et al.,
1995), and smoking prevention studies (Kalbfleisch and Lawless, 1985) highlight the scope of problems
amenable to this type of analysis. Recently, however, there has been interest in considering more general
models for panel data. Satten (1999) considers a mixed time-homogeneous Markov model for progressive
disease processes. Cook (1999) considers a mixed time-homogeneous Markov model for the special case
of a two-state alternating process under panel observation.

Here we present a generalized mover–stayer model in which, conditionally on latent mover–stayer
variables, subjects follow a time-homogeneous Markov process. Marginally the model represents a
mixture of nested continuous-time Markov processes in which sub-models are defined by constraining
transition intensities out of one or more states in the full model to be zero. Thus, each individual can
have one or more absorbing states and, once one of these states is entered, no further transitions can take
place. The usual mover–stayer model constrains ‘stayers’ to remain in their initial state (see, for example,
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Frydman, 1984). The model considered here is, therefore, more general in the sense that subjects may
make transitions between a number of states before entering one of their ‘stayer’ states.

The remainder of the paper is organized as follows. In Section 2 we review the analysis of panel data
under a time-homogeneous Markov model. In Section 3 the generalized mover–stayer model is introduced
and extensions to accommodate regression analyses for both the transition intensities and the mover–stayer
probabilities are described. The methods are applied to data from a smoking prevention study in Section 4,
and general remarks are made in Section 5.

2. PANEL DATA FROM MARKOV PROCESSES

Suppose an individual makes transitions among K states according to a continuous-time Markov
process. Let the states be identified by the integers 1, 2, . . . , K , and let Y (t) represent the state occupied
at time t for t � 0. Let P(s, t) be the K × K transition probability matrix with (i, j) entry

Pi j (s, t) = Pr{Y (t) = j |Y (s) = i}
for 0 � s � t and i, j = 1, 2, . . . , K . The transition intensity from state i to j at time t is

λi j (t) = lim
�t→0

Pi j (t, t + �t)

�t
, i 	= j

and, by convention, we set λi i (t) = −∑
j 	=iλi j (t), i, j = 1, . . . , K . Let �(t) be the K × K transition

intensity matrix with (i, j) entry λi j (t), i, j = 1, . . . , K .
In this paper, we confine our attention to time-homogeneous Markov models for which the transition

intensities are independent of t . We therefore let λi j (t) = λi j , i, j = 1, . . . , K , and write �(t) = �. It
follows that P(s, t) = P(0, t − s) which, for convenience, we write as P(t − s). It can be seen that

P(t) = exp(�t) =
∞∑

i=0

�i t i/ i !.

In most applications, we are interested in fitting models in which � = (λi j ) is written as a function of a
parameter vector, θ = (θ1, . . . , θA)′ say. For example, in a problem with no covariates and no structural
zeros in �, we might take A = k(k − 1) and define the elements of θ as {log λi j }. In many instances, we
may wish to specify some structure which relates elements in the model. For example, in a progressive
illness–death model with three states (1 = healthy, 2 = ill, 3 = dead), we may wish to relate the intensities
for death in states 1 and 2 and specify λ12 = exp(θ1), λ13 = exp(θ1 + θ2), so that θ2 measures the
additional risk due to illness. When covariates are present we may wish to test whether covariate effects
are significantly different for particular transition intensities, and therefore we need to fit models in which
some covariate effects are constrained to be the same.

It is well known that simple formulas for the computation of P(t) are available (see, for example,
Cox and Miller, 1977, p. 151). If � is diagonalizable, then we can write � = H D H−1 where D =
diag(d1, d2, . . . , dK ) is a diagonal matrix of eigenvalues of � and H is a matrix whose columns are
independent right eigenvectors. It is then easy to see that

P(t) = H exp(Dt)H−1. (2.1)

Thus, once the eigenvalue decomposition of � is known, computation of the transition probability matrix
is straightforward. One can also develop formulas to compute the matrix of first derivatives ∂ P(t)/∂θk ,
k = 1, . . . , A (see, for example, Kalbfleisch and Lawless, 1985, 1989). We show how this is done in a
more general context in the next section.
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Suppose N individuals are under study and each individual independently follows a common
continuous-time Markov process. Let Y�(t) denote the state occupied by individual � at time t � 0,
� = 1, . . . , N . Let t�0, t�1, . . . , t�m�

denote the m� + 1 times at which individual � is observed, and
let z� = (i�0, i�1, . . . , i�m�

) denote the states occupied at each observation time (i.e. i�j = Y�(t�j ), for
j = 0, 1, . . . , m�). It is assumed that the observation times are independent of the process, although this
can be relaxed to allow the observation status of the process at time t (i.e. whether it is observed or not
observed) to depend on the observed history of the process up to time t−. Finally, it is convenient to define
the set

U� = {(i�,r−1, i�r , s�r ) : s�r = t�r − t�,r−1, r = 1, . . . , m�}, (2.2)

the r th triple of which indicates the state occupied at t�,r−1, the state occupied at t�,r , and the time elapsed
between t�,r−1 and t�,r .

Conditional on the initial state Y�(t�0) = i�0, the contribution to the likelihood for θ from individual �

is

L�(θ) =
m�∏

r=1

Pi�,r−1i�r (t�r − t�,r−1) =
∏

(i, j,s)∈U�

Pi j (s).

The full likelihood function for θ is therefore

L(θ) =
N∏

�=1

L�(θ). (2.3)

It is straightforward to show that the observed information arising from (2.3) has (u, v) entry

N∑
�=1

∑
(i, j,s)∈U�

[
1

P2
i j (s)

∂ Pi j (s)

∂θu

∂ Pi j (s)

∂θv

− 1

Pi j (s)

∂2 Pi j (s)

∂θu∂θv

]
. (2.4)

We may estimate the contribution to the expected information from individual � by taking the expectation
with respect to the distribution of the state occupied by individual � at time t�r , conditional on the state
individual � occupied at t�,r−1, for each r = 1, 2, . . . , m�. It can then be seen that the term involving
the second derivatives in (2.4) has conditional, and hence marginal, expectation 0 for each �. An estimate
of the (u, v) entry of the expected information is then given by the sum of the conditional expectations
of (2.4) given by

N∑
�=1

∑
(i,s)∈U∗

�

K∑
j=1

1

Pi j (s)

∂ Pi j (s)

∂θu

∂ Pi j (s)

∂θv

, (2.5)

where U∗
� = {(i�,r−1, s�r ) ∈ U�, r = 1, . . . , m�}. This form was suggested by Kalbfleisch and Lawless

(1985, 1989) and Gentleman et al. (1994).
An alternative estimate is given by retaining only the first term in (2.4), which is justified because the

expectation of the second term is zero. We then write

Iu,v(θ) =
N∑

�=1

∑
(i, j,s)∈U�

1

P2
i j (s)

∂ Pi j (s)

∂θu

∂ Pi j (s)

∂θv

. (2.6)

This approach proves to be the most convenient strategy for estimating the expected information in the
next section.
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3. THE GENERALIZED MOVER–STAYER MODEL

3.1 Model formulation

Frequently there is heterogeneity in panel data beyond that which is expected from an underlying Markov
model. One particular type of heterogeneity arises when there are unusually long runs of observations in a
particular state. When these runs occur in the initial state for many individuals, mover–stayer models
provide a useful framework (see, for example, Frydman, 1984). In the usual mover–stayer model, a
randomly selected individual � either stays in its initial state, i�0 = i say, with probability πi , or with
complementary probability 1 − πi ‘moves’ among the full set of states according to a common Markov
process with transition intensity matrix �. In population studies of chronic degenerative disease processes,
mover–stayer models are attractive because they accommodate the possibility that a substantial proportion
of the population may be disease free over the course of observation and will therefore not experience
degeneration.

In many contexts, long runs of observations in a particular state are observed after some initial
transitions. This can happen, for example, in a behavioural study where there may be some experimental
behaviour before individuals ‘settle in’ with a final choice. To describe such behaviour, we develop
a different mover–stayer type model in which each individual � is allowed to have a different set of
absorbing states. If state k is an absorbing state for individual �, once individual � enters state k, no further
transitions occur. Individual � is then said to be a ‘stayer’ in state k. Thus, a typical individual will move
among the states according to the underlying Markov process until it encounters one of its absorbing
states, whereupon it is confined there. We term this model the ‘generalized mover–stayer model’.

The generalized mover–stayer model is more formally specified as follows. Let α� = (α�1, . . . , α�K )′
be a vector of mover–stayer indicators for individual � where α�k = 0 if the kth state is absorbing for
individual � and α�k = 1 otherwise. Conditional on α�, we suppose that the process for this individual is
timehomogeneous Markov with transition intensity matrix

�(α�) =




α�1λ11 α�1λ12 · · · α�1λ1K

α�2λ21 α�2λ22 · · · α�2λ2K
...

...
...

α�K λK 1 α�K λK 2 · · · α�K λK K


 .

If α� = 1 the model of Section 2 is retrieved. If any components of α� are zero, however, the
corresponding states in the chain become absorbing. The probability transition matrix corresponding to
α� is

P(t |α�) = exp{�(α�)t}. (3.1)

The variables α� are unobserved and, to complete the model, we need to specify their distribution.
We suppose that α�, � = 1, . . . , N are independent and identically distributed. Further, we assume that
α�k is a Bernoulli random variable with Pr(α�k = 0) = πk , and Pr(α�k = 1) = 1 − πk , k = 1, . . . , K ,
where α�k and α�k′ are independently distributed. It is often useful to reparametrize these probabilities in
terms of a basic parameter vector φ = (φ1, . . . , φB)′. For example, one might set B = K and take φk =
log(πk/(1 − πk)), k = 1, . . . , K in the absence of covariates. Let f (α�;φ) = ∏K

k=1 π
1−α�k
k (1 − πk)

α�k

be the joint probability mass function of α�. Note that given α� the process is Markov, but marginally the
process {Y�(t), t > 0} does not satisfy the Markov property.

To write down the likelihood, we introduce some additional notation. We use the same definitions
of the observation times t�0, t�1, . . . , t�m�

and the states occupied, z� = (i�0, . . . , i�m�
), as before, but

suppose here that observation begins at t�0 = 0, the time origin of the process.
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The vector z� often identifies some mover states for the �th individual and we define

M� = {i : � is a known mover from state i}. (3.2)

Note that M� comprises all states which the �th individual is known to have exited. Let S = {0, 1}K and

S� = {α ∈ S : αi = 1 for all i ∈ M�}. (3.3)

Finally, we again use the set notation for U� as given in (2.3). The �th component of the likelihood can
then be written as

L�(ψ) =
∑
α∈S�

P�(α,θ) f�(α;φ) (3.4)

where

P�(α,θ) =
∏

(i, j,s)∈U�

Pi j (s|α), (3.5)

f�(α;φ) =
∏

i∈M�

(1 − πi ) ·
∏

i 	∈M�

π
1−α�i
i (1 − πi )

α�i ,

and ψ = (θ′,φ′)′. The overall likelihood function is

L(ψ) =
N∏

�=1

L�(ψ). (3.6)

The expression (3.4) simplifies in a number of situations and sometimes, as in the ordinary
homogeneous case, grouping across individuals leads to simplification. The formulation in (3.6), however,
is fully general and serves to clearly illustrate the main ideas. A Fisher scoring algorithm for obtaining
maximum likelihood estimates is described in Appendix A.

3.2 Remarks on regression modelling

In many applications there are covariates available for each individual under study and interest lies in the
relationship between these covariates, the transition intensities and the mover–stayer probabilities. The
discussion of the parametrization of the mover–stayer model has thus far been quite general and here we
make specific remarks on the formulation of regression models.

Suppose that individual � has an associated covariate vector x′
� = (x�0, x�1, . . . , x�,d−1) where x�0 =

1, � = 1, . . . , N . Given α� and x�, individual � is assumed to follow a time-homogeneous Markov model
with the (i, j) entry of the conditional transition intensity matrix �(α�, x�) given by α�iλi j (x�). Here
α�i , i = 1, . . . , K are independent Bernoulli random variables with Pr(α�i = 0|x�) = πi (x�). Given
x� and x�′ , α� and α�′ are assumed to be independent. Covariate effects may be naturally examined by
specifying regression models of the form

log λi j (x�) = x′
�θi j , i 	= j

log(πi (x�)/(1 − πi (x�))) = x′
�φi ,

although other suitable link functions may be chosen. In these regression models, θi j =
(θi j0, θi j1, . . . , θi j,d−1)

′ is a vector of d regression parameters relating the transition intensity from state i
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3

Fig. 1. Three-state diagram for smoking study.

to j to the covariates x�, and similarly φi = (φi0, φi1, . . . , φi,d−1)
′ is a vector of d regression parameters

relating the mover–stayer probability from state i to the covariates x�. Of course the covariate vectors
modulating the various transition intensities and mover–stayer probabilities do not need to be the same.
The Fisher scoring algorithm may proceed in the same manner as described in Appendix A. We remark,
however, that the number of parameters to be estimated increases rapidly with the introduction of new
covariates since they may act on more than one model for each state of the process.

4. APPLICATION TO A SMOKING PREVENTION STUDY

The Waterloo Smoking Prevention Project is a randomized longitudinal study designed to investigate
smoking behaviour among schoolchildren. A total of 6294 students from 100 schools in seven Ontario
school boards participated in this study. Schools were randomized to receive either the regular health
education programme, or one of four intensive anti-smoking programmes. The four intensive anti-smoking
programmes involved identical teaching material, but differed in who delivered the material (teacher or
public health nurse), and how that person was trained (by workshop or through the use of printed material).
For the purpose of these analyses we pool the four treatment arms and define the treatment variable to be
one for students from a school which was randomized to one of these four arms, and zero otherwise.

Questionaires regarding smoking attitudes and behaviour were administered annually from grade 6
to grade 12. To model the children’s behaviour we define three states of interest. Children in state 1 have
never smoked and are classified ‘non-smokers’. State 2 represents children who are either regular smokers
or are ‘experimenting’ with smoking, and children who have smoked but are currently not smoking are
classified in state 3. The model is represented by the three-state diagram in Figure 1.

For illustration we have included sample data from children in two participating schools in Table 1.
Inspection of the table reveals considerable variation in the spacing and number of assessments. The
intermittently missing data arise due to absences from school and to students who moved to schools
not participating in the study. From Table 1 we also note that some subjects exhibit long runs of visits
in which they report being in the same state. These runs motivated the development of our generalized
mover–stayer model since there was concern that an insufficient number of transitions were observed for
a standard Markov model.

A primary objective of this study is to model smoking behaviour from the onset of smoking and so
we restrict consideration to individuals who are known to have been non-smokers at the beginning of
observation (in grade 6). This represents almost all of the sample. Our primary interest is to illustrate the
application of the generalized mover–stayer model in this setting and to contrast it with the findings from
a time-homogeneous Markov model. We also examine the effects of covariates representing treatment
status and gender.
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Table 1. Sample data from two schools participating in the Waterloo smoking prevention project

School A School B
Assessment Assessment

ID Group Sex 1 2 3 4 5 6 7 ID Group Sex 1 2 3 4 5 6 7
1 Control Male 1 2 2 2 2 2 2 1 Treatment Male 1 – – – – – –
2 Control Female 1 1 – – 3 3 3 2 Treatment Female 1 1 1 1 1 3 3
3 Control Female 1 2 – – – – – 3 Treatment Male 1 1 1 2 2 2 2
4 Control Male 1 1 1 – 2 2 2 5 Treatment Male 1 – 1 1 1 1 1
5 Control Male 1 1 1 1 1 1 1 5 Treatment Female 1 1 1 1 1 1 1
6 Control Female 1 3 3 3 2 2 2 6 Treatment Female 1 1 1 3 2 2 2
7 Control Male 1 3 3 3 3 – – 7 Treatment Male 1 1 1 – 2 2 2
8 Control Male 1 1 1 – 1 1 1 8 Treatment Female 1 1 1 – 2 2 2
9 Control Male 1 3 3 2 – – – 9 Treatment Female 1 – 1 1 1 1 1

10 Control Male 1 1 1 1 1 1 3 10 Treatment Male 1 1 1 1 1 1 2
11 Control Male 1 – – – 2 3 3 11 Treatment Male 1 1 2 3 3 3 3
12 Control Female 1 1 1 1 1 1 – 12 Treatment Female 1 2 2 – 2 2 2
13 Control Male 1 1 1 – 1 1 1 13 Treatment Female 1 1 1 1 1 1 1
14 Control Male 1 1 – – 1 1 1 14 Treatment Male 1 1 1 1 1 1 3
15 Control Female 1 1 1 – 2 – – 15 Treatment Female 1 1 1 1 1 2 2
16 Control Male 1 1 1 – – – – 16 Treatment Male 1 3 2 2 2 2 2
17 Control Male 1 1 1 2 2 2 2 17 Treatment Female 1 1 1 2 2 2 2
18 Control Female 1 1 2 2 – 2 2 18 Treatment Male 1 1 1 2 2 2 2
19 Control Male 1 1 1 1 1 1 1 19 Treatment Male 1 1 1 1 1 3 3
20 Control Male 1 1 1 1 1 1 1 20 Treatment Female 1 1 1 1 1 2 2
21 Control Male 1 2 2 2 2 – – 21 Treatment Female 1 1 – – – – –
22 Control Female 1 1 1 – 1 – – 22 Treatment Female 1 1 1 – – – –
23 Control Female 1 1 1 – 2 2 2 23 Treatment Female 1 1 1 1 1 1 1
24 Control Female 1 1 2 – 3 2 2 24 Treatment Male 1 1 1 3 2 2 2
25 Control Female 1 1 1 2 2 2 3 25 Treatment Female 1 1 1 1 2 – –
26 Control Female 1 – – – – – – 26 Treatment Male 1 1 1 1 1 3 2
27 Control Female 1 1 3 2 2 2 2 27 Treatment Female 1 1 1 1 1 1 1
28 Control Male 1 1 1 1 1 1 3 28 Treatment Female 1 1 1 2 2 2 2

For the time-homogeneous Markov model the intensity matrix is given by

� =

−λ12 λ12 0

0 −λ23 λ23
0 λ32 −λ32


 .

The conditional intensity matrix for individual � in the mover–stayer framework is given by

�(α�) =

−α�1λ12 α�1λ12 0

0 −α�2λ23 α�2λ23
0 α�3λ32 −α�3λ32


 ,

where α�k has a Bernoulli distribution with probability πk = P(α�k = 0), and α�k are independent,
k = 1, 2, 3, � = 1, . . . , N . To estimate parameters λ = (λ12, λ23, λ32)

′ and π = (π1, π2, π3)
′, we first

reparametrize as θi j = log λi j and φi = log(πi/(1 − πi )), i, j = 1, 2, 3 and let θ = (θ12, θ23, θ32)
′ and

φ = (φ1, φ2, φ3)
′.
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We fit a time-homogeneous Markov model and a generalized mover–stayer model to these data.
The maximum likelihood estimates, information-based standard errors, approximate 95% confidence
intervals for the parameters, and the log-likelihoods are reported in Table 2. We report the estimates
under the parametrizations used for optimization and under the more interpretable scales of intensities
and probabilities. For robustness against model misspecification which may arise from school-to-school
variation in the transition intensities and mover–stayer probabilities, we also report robust standard errors
computed using the sandwich-type variance formula provided in Appendix B (Royall, 1986).

The inspection of the estimates for the Markov model and the generalized mover–stayer model
suggests that there is a significant improvement in the fit to the data with the incorporation of the mover–
stayer probabilities. The transition intensities for movers out of states 2 and 3 are considerably higher in
the generalized model than the regular Markov model because we have accommodated the possibility that
some individuals are ‘stayers’ in these states. The estimate of the ‘stayer’ probability in state 1, however, is
extremely small which implies that there would essentially be no difference between the inferences drawn
from an ordinary mover–stayer model and the Markov model. We next fit a reduced mover–stayer model
with the constraint that π1 = 0. This appears to be a reasonable constraint based on similarities of the
log-likelihoods, estimates, and confidence intervals for the full and reduced models. Overall there is good
agreement between the information-based and robust standard errors suggesting that there is little effect
of intra-school correlation. This also suggests that likelihood ratio statistics can be used for inference here
and would give results similar to those based on robust or information-based standard errors.

To illustrate an application involving covariates we fit two regression models involving treatment and
gender. Based on the findings reported in Table 2 we constrain the stayer probability in state 1 to be zero
in each of these models. Let x�0 = 1, x�1 = 1 if individual � is in one of the treatment arms and x�1 = 0
otherwise, x�2 = 1 if individual � is male and x�2 = 0 otherwise, and finally let x� = (1, x�1, x�2)

′,
� = 1, . . . , N . The regression models involving both covariates take the form

log λi j (x�) = x′
�θi j , (i, j) = (1, 2), (2, 3), (3, 2)

log(πi (x�)/(1 − πi (x�))) = x′
�φi , i = 2, 3,

where θi j = (θi j0, θi j1, θi j2)
′, and φi = (φi0, φi1, φi2)

′. The estimates arising from fitting regression
models involving just treatment as well as treatment and sex, are reported in Table 3.

Model 1 includes only the treatment indicator and suggests that the treatment has no significant effect
on either the transition intensities or the mover–stayer probabilities. Model 2 suggests that when we
control for the assigned treatment, males have significantly lower transition intensities out of state 1
(p = 0.048). Specifically, among individuals in the same treatment group, the rate of transition out of
state 1 for males is 92% that of females (95% CI (85.4, 99.9%)). In this study, there is some evidence that
females are more likely to smoke at an earlier age than males.

5. DISCUSSION

The traditional mover–stayer model accommodates the possibility that some subjects may remain
in their initial state indefinitely, but those who leave their initial state are assumed to follow a common
Markov process. The generalized mover–stayer model presented here also allows some subjects to remain
in their initial state. Others may make transitions through several states before entering a stayer state
in which they will remain indefinitely. Under this model, once a subject has been observed to leave a
particular state, that state will never be an absorbing state for them. A further generalization would allow
states passed through to eventually become absorbing states. In this more general model, each time a
new state is entered there is a probability that the state will, in this visit, be an absorbing, or stayer, state. Of
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Table 3. Estimates arising from generalized mover–stayer Markov regression models

State Model 1 Model 2
Parameter i j Covariate MLE SEa SEb MLE SEa SEb

θi j 1 2 Intercept −1.685 0.046 0.045 −1.645 0.049 0.049
Treatment 0.024 0.052 0.050 0.022 0.050 0.050
Sex −0.079 0.041 0.040

2 3 Intercept 1.611 0.467 0.490 1.447 0.502 0.518
Treatment −0.107 0.524 0.521 −0.130 0.476 0.536
Sex 0.448 0.405 0.377

3 2 Intercept 2.158 0.440 0.459 1.981 0.479 0.484
Treatment −0.090 0.488 0.487 −0.119 0.455 0.503
Sex 0.485 0.391 0.353

φi 1 Intercept
Treatment
Sex

2 Intercept −1.249 0.203 0.200 −1.197 0.208 0.207
Treatment 0.077 0.236 0.225 0.088 0.223 0.231
Sex −0.137 0.180 0.190

3 Intercept −2.346 0.316 0.333 −2.313 0.315 0.356
Treatment 0.440 0.343 0.356 0.444 0.324 0.354
Sex −0.081 0.217 0.240

Log-likelihood -11 039.307 -11 036.030
aStandard errors based on the expected information matrix.
bRobust standard errors based on the sandwich variance formula given in Appendix B.

course, with panel data this sort of generalization is difficult since the complete path is unobserved and
hence the number of times each state is entered is unknown.

The generalized mover–stayer model represents a discrete mixture of Markov processes in which each
subject follows a specific sub-model defined by a reduced set of communicating states. For sub-models
which share sub-classes, the transition intensities between states within these sub-classes are assumed to
be the same. Multi-state models involving continuous mixing distributions have proven useful in many
contexts (Aalen, 1987; Cook and Ng, 1997; Ng and Cook, 1997), but in general models for processes
under panel observation have not been developed. This is in part due to the numerical challenges in
obtaining the marginal likelihood function. Numerical methods such as Markov chain Monte Carlo may
prove useful in this setting.

Another extension of interest involves the introduction of time-nonhomogeneous transition intensities.
Gentleman et al. (1994) provide an example in which piecewise constant transition intensities are
specified. Kalbfleisch and Lawless (1989) point out that a class of Weibull transition intensities may
be specified and estimated under a time transformation. Of the two approaches, the piecewise constant
formulation is the most flexible and in some contexts it would be worthwhile to combine such a model
with a mover–stayer formulation.

The data from the Waterloo Smoking Prevention Project potentially involve both a longitudinal
dependence arising from responses measured repeatedly over time, and a cross-sectional dependence
arising from the clustering of students within schools. The focus of the transitional analyses reported here
is on the longitudinal correlation, but to provide some degree of robustness against possible correlations
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among students in the same school we adopted robust sandwich-type variance estimates. This is a
reasonable strategy when the anticipated degree of between-cluster heterogeneity is at most mild, as was
the case here. With more substantial clustering the effect of misspecification becomes more serious and
biases in the resulting parameter estimates may become a central concern. If this is the case, it may be
possible to obtain a suitable model either by the introduction of school-level random effects, or by the use
of generalized estimating equations in the spirit of Albert and Waclawiw (1998).

Since the generalized mover–stayer model does not possess the Markov property, it is required that
the processes be observed from the start. Frequently, it is possible to identify time origins corresponding
to some initiating event. For example, studies of disease activity and progression often involve follow-up
from disease onset, such as a known time of infection (e.g. time from transfusion-related HIV infection).
In studies of labour force dynamics, information may be collected on employment status from the time
of entry into the work-force. In some applications, however, it may be difficult to identify, or even
conceptualize, a reasonable time origin. In rheumatologic diseases for example, disease activity may have
been present for several years prior to clinical diagnosis. Retrospective ascertainment of the time origin
of the disease should be attempted to provide information which can be used to deal with left-truncation
in such settings.
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APPENDIX A

A Fisher scoring algorithm for maximum likelihood estimation

From (3.6), we obtain the score vector with uth element

Su(ψ) = ∂ log L(ψ)

∂ψu
=

N∑
�=1

1

L�

∂L�

∂ψu
, (A.1)

where u = 1, . . . , A + B. The negative of the matrix of second derivatives has (u, v) entry

− ∂2 log L

∂ψu∂ψv

=
N∑

�=1

1

L2
�

∂L�

∂ψu

∂L�

∂ψv

−
N∑

�=1

1

L�

∂2L�

∂ψuψv

, (A.2)

u, v = 1, . . . , A + B. The Fisher information is the expectation of (A.2). By considering the observed
z� as one outcome in a multinomial trial for the �th individual, it can be seen that the expectation of the
second term in the right-hand side of (A.2) is zero. As a consequence, an estimate of the (u, v) element of
the Fisher information is provided by

Iuv(ψ) =
N∑

�=1

1

L2
�

∂L�

∂ψu

∂L�

∂ψv

. (A.3)

Note that the simplifications leading to (2.6) for the homogeneous Markov model and (A.3) both
appeal to the multinomial form of the likelihood function but these are quite different multinomial
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distributions. In deriving (2.6) we make use of the multinomial distribution of the state occupied at
subsequent visits conditional on the previous state occupied, and therefore there are at most K outcomes
in the multinomial distribution. In deriving (A.3), the entire observed sequence of states for individual
� is viewed as a realization from a multinomial distribution with m� · K possible outcomes. The size of
this sample space suggests that (A.3) is much more convenient to work with than the estimate analogous
to (2.5).

We now describe the algorithm. Let ψ̂(0) = (θ̂
′
(0), φ̂

′
(0))

′ be an initial estimate of ψ, S(ψ) be the
(A + B) × 1 score vector with components given by (A.1) and I (ψ) be the (A + B) × (A + B) matrix
with entries given by (A.3). The maximum likelihood estimate of ψ can often be obtained by recursive
application of the equation

ψ̂(r) = ψ̂(r−1) + I −1(ψ̂(r−1))S(ψ̂(r−1))

until convergence is achieved, where it is assumed that I (ψ̂(r)) is nonsingular, r = 1, 2, . . . .
This procedure needs only the first derivatives of the likelihood components L� and these are obtained

using only the first derivatives of the transition matrices P(s|α). In particular, we find that

∂L�

∂ψu
=

∑
α∈S�

P�(α,θ) f�(α;φ)
∑

(i, j,s)∈U�

1

Pi j (s|α)

∂ Pi j (s|α)

∂θu

for u = 1, . . . , A, and

∂L�

∂ψu
=

∑
α∈S�

P�(α,θ) f�(α;φ)


−

∑
i∈M�

1

1 − πi

∂πi

∂φu−A
+

∑
i /∈M�

(
1 − α�i

πi
− α�i

1 − πi

)
∂πi

∂φu−A




for u = A + 1, . . . , A + B.
To compute Pi j (s|α), we suppose that �(α) is diagonalizable and utilize the decomposition �(α) =

H(α)D(α)H−1(α) which can be easily computed for any given α and θ. In this, D(α) is the diagonal
matrix of eigenvalues d1(α), . . . , dK (α), and H(α) is the K × K matrix whose i th column is a right
eigenvector corresponding to di (α). Recall that the i th row of �(α) is (λi1, . . . , λi K ) if i ∈ M�; when
i /∈ M�, the i th row of �(α) may be either (0, . . . , 0) or (λi1, . . . , λi K ) depending on whether α�i = 0
or 1.

Following the results in Section 2, it follows that the transition probability matrix can be expressed as

P(s|α) = H(α) exp(D(α)s)H−1(α).

The first derivatives with respect to the components of θ are

∂ P(s|α)

∂ψu
= ∂ P(s|α)

∂θu
= H(α)V (u)(α)H−1(α), u = 1, . . . , A,

where V (u)(α) is the K × K matrix with (i, k) entry given by

g(u)
ik (exp{di (α)s} − exp{dk(α)s})

di (α) − dk(α)
,

if di (α) 	= dk(α). If di (α) = dk(α) or, in particular, if i = k the (i, k) element is

g(u)
ik s exp{di (α)s}.
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In these expressions, g(u)
ik is the (i, k) entry in G(u) = H−1(α)(∂�(α)∂θu)H(α). A derivation of this

result for the case of distinct eigenvalues appears in Kalbfleisch and Lawless (1985).
Note that the assumption that �(α) is diagonalizable does not imply that all eigenvalues are distinct.

One could also develop more general decompositions that would apply when �(α) is not diagonalizable,
but for practical purposes, the diagonalizable case is sufficient.

APPENDIX B

Robust variance estimation

To protect against possible residual correlation in the latent mover–stayer indicators and the transition
times, in addition to information-based standard errors we report robust standard errors based on the
sandwich-type variance formula (Royall, 1986). We generalize the notation of Appendix A and let
S(h)(ψ) denote the score vector given by (A.1) but constructed based only on students from school h,
h = 1, 2, . . . , H , where H denotes the total number of schools. Then

S(ψ) =
H∑

h=1

S(h)(ψ).

From White (1982) we know that if L(ψ) is constructed from a misspecified model, then ψ̂ converges to
ψ∗ almost surely, where ψ∗ solves ET (S(ψ)) where ET denotes an expectation taken with respect to the
true distribution. Moreover, √

H(ψ̂ −ψ∗) −→ N (0, C(ψ∗))

almost surely where C(ψ) = A−1(ψ)B(ψ)A−1(ψ) and

A(ψ) = ET (∂S(ψ)/∂ψ)

B(ψ) = ET (S(ψ)S′(ψ)).

We estimate the matrix C(ψ) evaluated at ψ∗ with Â−1(ψ̂)B̂(ψ̂) Â−1(ψ̂) where

Â(ψ̂) = H−1
H∑

h=1

∂S(h)(ψ)/∂ψ|
ψ=ψ̂

B̂(ψ̂) = H−1
H∑

h=1

S(h)(ψ)[S(h)(ψ)]′|
ψ=ψ̂ .
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